Prof. Dr. Alfred Toth

Semiotische und logische Abbildungen IV

1. Werfen wir einen Blick auf die in Toth (2012) herausgearbeitete Struktur der Semiotik von Albert Menne (1992, S. 39 ff.)

$_4\mathbf{Z}^2$	Signifikant	Signifikat
Ereignis	Lalem	Dinge
Gestalt	Logem	Begriffe (Universalien)
Funktion	Lexem Radicem	Sachverhalte (Begriffsgefüge) ?

Wir erkennen zweierlei:

1. Wegen der von dieser Semiotik vorausgesetzten semiotisch-ontischen Isomorphie ist sowohl auf der Seite des Signifikanten als auch auf derjenigen des Signifikats jede Entität der Stufe n in derjenigen der Stufe (n+1) eingeschlossen, d.h. das obige semiotisch-ontische System weist die mengentheoretische Struktur

$$x, \{x\}, \{\{x\}\}, ...$$

auf und ist daher einerseits prinzipiell fortsetzbar, andererseits können aber keine "Zwischen-Entitäten" in die Hierarchie eingesetzt werden (d.h. es gibt z.B. nicht wie in der peirceschen Semiotik "Subzeichen" aus "gebrochenen" Kategorien).

2. Das Verhältnis von Signifikant zu Signifikat ist keineswegs (wie dies in einigen Semiotiken praktiziert oder zumindest behauptet wird) dasjenige von

Intension zu Extension. Vielmehr enthält die Signifikatsseite sowohl extensionale als auch intensionale Glieder (d.h. sowohl Entitäten als auch Abbildungen).

2. Vom Standpunkt der Klausschen Semiotik (Klaus 1973) wird die Syntax durch die Relation

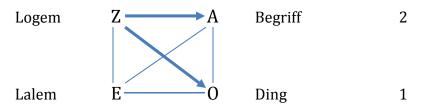
R(Z, Z'),

die (extensionale) Sigmatik durch die Relation

R(Z, 0)

und die (intensionale) Semantik durch die Relation

R(Z, A)

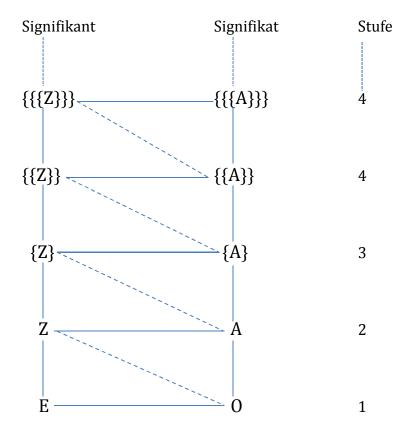

charakterisiert, d.h. alle drei zeicheninternen Relationen sind als Abbildungen eingeführt, und damit gibt es natürlich keine entsprechenden Entitäten, sondern höchstens Funktionswerte. Die folgende Tabelle aus Link (1979, S. 26) gibt eine Übersicht

Syntax	Semantik		
	Extension	Intension (Sinn)	
Satz	Wahrheitswert	Sachverhalt, Proposition	
Individuenterm (Name, Kennzeichnung)	Individuum, Objekt	Individuenbegriff, Individuenkonzept	
1-stell. Prädikat	Klasse von Eigenschaft, Objekten 1-stell. Attribu		
n-stell. Prädikat	n-stellige Relation	n-stelliges Attribut (n > 1)	
(n > 1)	(n > 1)	(engl. auch: relation-in-intension)	

Wie man erkennt, läßt diese Übersicht allerdings nicht den für die Semiotik benötigten Stufenbau erkennen. Einen solchen kann man jedoch seit Ajdukiewicz (1935) durch Einführung logischer Typen einführen. Die beste Übersicht stammt wieder aus Link (1979, S. 153 f.)

Denotatemenge D _r	Турт	Bezeichnung	repräsentati- ver Ausdruck
E	e	Individuen	Hans
2	t	Wahrheitswerte	es regnet
2.	et	Mengen von Individuen	Pferd
$2^{E\times E}=(2^E)^E$	cet	2-stellige Relationen	loben
$2^{E''} = (\ldots (2^{E})^{E} \ldots)^{E}$	e"t	n-stellige Relationen	-
22	tt	1-stellige Wahr- heitsfunktionen	nicht
$2^{2\times 2} = (2^2)^2$	ttt	2-stellige Wahr- heitsfunktionen	oder
2 ^(½^E)	(et)t	Mengen von Mengen	-
E^I	se	Individuenkonzepte	der Gewinner
21	st	Propositionen	daß S
(2 ^E) ^I	set	Eigenschaften	die Eigen- schaft Mensch
$(2^{E^{I}})^{I} = ((2^{E})^{E})^{I}$	seet	2-stellige Attribute	-
$(2^{E^*})^I = ((\dots (2^E) \dots)^E)^I$	se"t	n-stellige Attribute	-
$2^{E\times 2^t} = (2^E)^{2^T}$	(st)et	Relationen zwischen Individuen und Propositionen	glauben
$2^{E \times (2^k)^i} = (2^E)^{(2^E)^i}$	(set)et	Relationen zwischen Individuen und Eigenschaften	versuchen
2 ^{(2^e)'}	(set)t	Mengen von Eigen- schaften	leicht
2 ^{(2*)'}) ^I	s(set)t	Eigenschaften von Eigenschaften	die Eigen- schaft, auf alle Men- schen zuzu- treffen

Wie bereits gesagt, wird nun in der Klausschen Semiotik die (intensionale) Semantik durch die Relationen vom Typ R(Z, A) und die (extensionale) Sigmatik durch die Relation vom Typ (Z, O) repräsentiert:



Das bedeutet also zunächst, daß sowohl extensionale als auch intensionale Abbildungen Funktion mit der Signifikantenseite als Domäne und der Signifikatenseite als Codomäne sind. Ferner können wir extensionale und intensionale Abbildungen dadurch unterscheiden, daß die letzteren im Gegensatz zu ersteren "stufenkonstante" Abbildungen sind. Sei also $x \in Signifikant$ und $y \in Signifikat$ und bezeichne n eine semiotisch-logische Stufe, dann können wir definieren

EXT: $x^n \rightarrow y^{n-1}$

INT: $x^n \rightarrow y^n$.

Dies gilt nun allerdings wegen der Mengenhierarchie x, $\{x\}$, $\{x\}$, ... nicht nur für die angegebenen Relation R(Z, A) und R(Z, O), sondern auch für alle isomorphen. Im folgenden Bild sind extensionale gestrichelt und intensionale ausgezogen eingezeichnet.

Es gibt somit folgende extensionale oder sigmatische Abbildungen

$$R(Z, O), R(\{Z\}, A), R(\{\{Z\}\}, \{A\}), R(\{\{Z\}\}\}, \{\{A\}\}), ...$$

und folgende intensionale oder semantische Abbildungen

 $R(Z, A), R(\{Z\}, \{A\}), R(\{\{Z\}\}, \{\{A\}\}), R(\{\{Z\}\}\}, \{\{A\}\}\}), \dots$

Literatur

Adjukiewicz, Kazimierz, Die syntaktische Konnexität. In: Studia philosophica 1, 1935, S. 1-27

Klaus, Georg, Semiotik und Erkenntnistheorie. 4. Aufl. München 1973

Link, Godehard, Montague-Grammatik. München 1979

Menne, Albert, Einführung in die Methodologie. 3. Aufl. Darmstadt 1992

Toth, Alfred, Zur Formalisierung der Menne-Semiotik I-II. In: Electronic Journal for Mathematical Semiotics, 2012

26.6.2012